The Witten Genus , after Kevin Costello

نویسندگان

  • KEVIN COSTELLO
  • Daniel Berwick Evans
  • Kevin Costello
چکیده

Definition 1.1. Given a ring R, a genus with values in R is a ring homomorphism, Ω ⊗Q→ R, where Ω is the G-bordism ring. For example, the Â-genus and L-genus are ring maps from Ω⊗Q→ Q. The Atiyah-Singer theorem shows that  can be refined to a genus Ω⊗Q→ Z. The L-genus (or signature) is defined on Ω⊗Q, and the Todd genus is defined on the complex cobordism category. We can define genera via multiplicative sequences, which we won’t discuss here, but see e.g. [HBJ92]. Essentially, they are certain power series in characteristic numbers, and so may be evaluated on a manifold. An old theorem of Thom guarantees this will be a cobordism invariant, and certain properties of the power series force the invariant to give a ring homomorphism. One way to define the Witten genus is by some multiplicative sequence:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Genus Gromov–witten Invariants as Genus Zero Invariants of Symmetric Products

I prove a formula expressing the descendent genus g Gromov-Witten invariants of a projective variety X in terms of genus 0 invariants of its symmetric product stack S(X). When X is a point, the latter are structure constants of the symmetric group, and we obtain a new way of calculating the Gromov-Witten invariants of a point.

متن کامل

KEVIN COSTELLO Definition

This is the first of two papers which construct a purely algebraic counterpart to the theory of Gromov-Witten invariants (at all genera). These GromovWitten type invariants depend on a Calabi-Yau A∞ category, which plays the role of the target in ordinary Gromov-Witten theory. When the Fukaya category of a compact symplectic manifold X is used, it is shown, under certain assumptions, that the u...

متن کامل

Topological Conformal Field Theories and Calabi-yau Categories

This paper concerns open, closed, and open-closed topological conformal field theories. We show that the category of open topological conformal field theories, at all genera, is homotopy equivalent to a category of Calabi-Yau A∞ categories. For each such, we show that there is a universal closed TCFT, which is the initial element in the category of compatible open-closed TCFTs. The homology of ...

متن کامل

1 6 Ja n 20 06 TOPOLOGICAL CONFORMAL FIELD THEORIES AND CALABI - YAU CATEGORIES

This is the first of two papers which construct a purely algebraic counterpart to the theory of Gromov-Witten invariants (at all genera). These GromovWitten type invariants depend on a Calabi-Yau A∞ category, which plays the role of the target in ordinary Gromov-Witten theory. When we use an appropriate A∞ version of the derived category of coherent sheaves on a Calabi-Yau variety, this constru...

متن کامل

The Gromov-witten Potential Associated to a Tcft

This is the sequel to my preprint“TCFTs and Calabi-Yau categories”. Here we extend the results of that paper to construct, for certain Calabi-Yau A∞ categories, something playing the role of the Gromov-Witten potential. This is a state in the Fock space associated to periodic cyclic homology, which is a symplectic vector space. Applying this to a suitable A∞ version of the derived category of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011